
Journal Applied Mechanics and Technical Physics, Vol. 37, No. 1, 1996 

R A R E F A C T I O N  S H O C K  W A V E  

I N  A P O R O U S  M A T E R I A L  

S. P.  K i s e l e v  a n d  V .  M .  F o m i n  UDC 539.374 

Let us consider an elastoplastic material containing a large number N of spherical pores. An exact 
solution of the problem of deformation of such a material is practically impossible. Therefore, an approximate 
approach is in wide spread use in which averaging methods are used to reduce an N-connected continuum 
to a porous body with certain effective characteristics. A large number of averaging methods exist currently 
and is surveyed in [1]. The present paper deals with averaging a cell. The technique of averaging on a porous 
elastoplastic material was developed in [2-8], where it was assumed that plastic deformations in a porous 
body start when mean stresses reach the yield surface. For a porous material this condition is insufficient. 
In particular, if the average pressure is rather high, then under the effect of pressure there appears a plastic 
region near the pore and plastic deformations occur even when mean stresses do not lie on the yield surface. 
A mathematical model accounting for the effect of the plastic zone on deformation of a plastic material was 
constructed in [9, 10]. Numerical calculations in [I I] have shown that the model describes well the propagation 
of shock waves (SW) in porous iron [12]. On the basis of the model, we study the propagation of rarefaction 
shock waves (RSW) in porous iron. 

Following [9-11], we write the equations of deformation of a porous material in the one-dimensional 
nonsteady case: 
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Here Ps, P, p, Si, E, gx, gT, Px, PT, ~1, gl, u, v, Crl, ml ,  me, and mp are the density of the material,  the average 
density, the pressure, the stress deviator,  the specific internal, cold, and thermal  energies, the cold and thermal 
pressures, the strain, the strain rate, the dislocation, the velocity, the  stress, the porosity, and the volume 
fraction of the material  in the  elastic and plastic states; F, v, Ks, #~, Y~, Ki, #i, Y,  and 7/are the Gruneisen 
coefficient and Poisson's ratio; the volume compression, shear moduli ,  and yield s t rength of the material;  the 
averaged moduli  of volume compression, shear, and yield strength; and the viscosity of the material.  A dot 
denotes the complete  t ime derivative�9 In the  case Ipl > Ip0[ a plastic zone appears in the vicinity of the pore, 
and deformations become elastoplast ic and are described by Eqs. (3) and (4)�9 These  formulas are valid at the 
loading stage (p~6 > 0). For the  unloading stage (p/~ < 0) one should use Eqs. (2)�9 

Equations (1)-(4) were solved numerical ly using a finite-difference method  with a cross-mesh pattern.  
To diffuse SW fronts an artificial viscosity was used, which was selected in the same way as in [13]. 

Let us consider a uniform iron plate (Fig. la) of thickness hi = 4 mm, which strikes, with velocity 
vp = 0�9 mm/#sec ,  a porous  iron plate (Fig. lb)  of thickness h2 = 17 mm and porosi ty m ~ = 10 -2.  The 
mechanical properties of iron (steel) are the same as in [11]: 

Ps = 7.85 g / c m  3, F = 2, #s = 80 GPa,  Ks = 160 GPa,  

Ys = (]do + r/g~)(1 + bs(~Pl)m), Y0 = 0.4 GPa,  bs = 2, m = 1/2�9 

In our case, the strain ra te  does not exceed 105 sec-1; therefore, following [14], the viscosity of iron is 
r/ = 3 . 1 0  3 Pa . sec .  

The stress profiles cq(x)  for several t ime moments  with the t ime step At  = 0.5 #sec are presented in 
Fig. 2 (broken line is the interface between porous and uniform iron). One can see that  the compression wave 
decomposes into three waves, and the rarefaction wave transforms into an RSW to the moment  t = 2 #sec. To 

24 



GPa 

32.9 : 

14.7 - 

Uniform Porous Iron 
roll 

1 

i 

2 
1 X,  c m  2 

Fig. 2 

IT/., 1 

0 . 0 3 -  

0 .02 - 

0 0 1 -  

-0"1"10 -:z, GPa 

/71-1 

0 0 2 t ,  # s e c  4 

- 0 "  1 , GPa 

4 

3 

2 

1 I # 
2 

Fig. 3 Fig. 4 

t 
t 

t ,  /zsec 4 

calculate RSW we introduced an artificial viscosity. The dependences r ) and ml( t )  at the depth 1 = 10 mm 
are presented in Fig. 3. The dependence cr:(t) at l = 10 mm in porous and uniform iron is shown in Fig. 4 
(solid and broken lines). 

A SW in a porous body has a three-wave structure and consists of a spring forerunner, a "frozen" 
wave, and a relaxation zone. It is seen from Fig. 3 that the porosity in a "frozen" SW does not change. The 
pores are collapsed in the relaxation zone, which results in a pressure rise related to the change of porosity 
according to the equation 

2 1 4 rhx 
p=  ln_ . 

m l  m l  

To explain RSW we find the propagation velocity of disturbances during unloading. The equation of 
motion is of the form 

dv Oa: 
0"1 : S1 - -  p .  P dt Ox ' 

As follows from the calculations (see Fig. 3), the change of porosity in the rarefaction wave can be neglected, 
and therefore taking account of dp ,~ K:dp /p  and Oa:/Oz = (OS:/Op - Op/Op)(Op/Ox) we obtain 

Op OV Op OV OV a 20p OS1 K1 - 0 ,  a 2 -  - - + - -  
p Ox Op p 

(a is the speed of sound). Hence it follows that the propagation velocity of disturbances is determined from 
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the formula dx/dt  = v -t- a. As mentioned before, since the stress ~rl(E) behind the SW lies much higher than 
the critical pressure Ip.I, at point E we have a l (E)  = --PE, Y = 0 (Fig. 5, where the solid line shows the 
dependence Y(p) and the point PE corresponds to the pressure behind the SW). Rarefaction to pressure pz 

occurs along the abscissa axis S1 = 0, so aS1/Op = 0, a_ = ~-KT/p. After attaining the point pz the speed of 

sound increases abruptly to a+ = ~/K1/p - OS1/Op [OS1/Op = (OS1/Op)(K1/p) < 0]. 
Depending on the gradient of the curve Y(p) at the point pz - 0 rarefaction can have either elastic (dot- 

and-dash line) or plastic character along the line Y(p). To answer the question we find the increment of elastic 
stress dS~ = 2#1del and the stress on the yield surface dS~ = (2 /3 )dY  during deformation dE1 = -dp /p .  If 
dS~ < dS[, the deformation is elastic, while with the reverse inequality, it is elastoplastic. Using the relations 
del = (2/3) del, d Y  = (OY/Op)(dp/dp)dp, and dp/dp = g l ,  we have 

4 dp 2 0 Y  
dS~ = - 5  #1 I ,  dS~ = "~P 1(1 dp. 

p - 3  p 

Adding to dS1 the value - d p  and dividing by dp, we find 

4 
00"~ -dp- -~  dS~ _ K1--~--~ ~1 _ 2 O0"p = - d p - ~  dS p = I/~'l (1_ ~. ~ 0.~pY ) 2 
Op -- dp p ae' Op dp p = ap 

(ae, ap are elastic and plastic speeds of sound). In the vicinity of the point pz - 0 we have IOY/Opl = 3/2, and 
2 = 2K1/p; as a result, the inequality dS~ < dS[ holds. for iron #I /K1 ~ 0.5, from which a 2 = 1.6K1/p, ap 

From the given inequality it follows that rarefaction from the point pz occurs elastically along the dot-and- 

dash line in Fig. 5. At the point Pz - 0 the velocity of the rarefaction wave a+ = ~(K1 + (4/3)#1)/p satisfies 
the inequality a+ > a_; therefore when intersecting the point pz the speed of sound increases abruptly 
from a_ to a+ in the rarefaction wave. As mentioned in [15], the mass velocity v remains a continuous 
function ( I -  =cons t ,  v = - f adp/p +const); as a result, the sharp increase of a leads to an intersection of 
characteristics in the rarefaction wave and an RSW appears (Fig. 6, where the heavy line is for the RSW, the 
point z denotes the moment of its appearance, and lines I-4 are for the RSW characteristics). 

Figure 7 shows the dependence of cr on the specific volume V, where cr = -Crl, cq = S1 - p, and the 
break at point A corresponds to the jump of the speed of sound [a]. The broken line denotes the Rayleigh 
line responsible for the RSW. As follows from Fig. 7, the flow is supersonic ahead of the RSW (in the system 
of the RSW front) and subsonic behind the RSW; so the conditions of evolutionary stability of the RSW are 
satisfied [16]. Further growth of the RSW jump is similar to that in [15]. On the one hand, RSW overtakes 
the characteristics 1; on the other hand, the characteristics 4 overtake the RSW. As a result, the RSW shown 
in Fig. 7 by the segment B C  grows until point C reaches point E and point B reaches point D. The line 

tangential to the curve o'(V) coincides with DE at point D, and the speed of sound aD = VD~--(Oo'/OV)D 

equals the propagation velocity of the RSW through the material behind it, VD = VD ~(CrE -- O'D)/(VD -- WE). 
The appropriate RSW in the plane S1, p are shown by the broken lines B C  and DE (see Fig. 5). 

In the present example the final state (point B in Fig. 5) is first in the elastic region, then at point F it 
passes to the plastic region and moves along the curve Y(p) to point D. The point F' (see Fig. 5) can be to the 
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left of D (the contact point of the curve Y(p) and the Rayleigh line ED).  If the final state in the rarefaction 
wave X is in the elasticity region at a straight line AF',  then the stress in the RSW changes abruptly from 
the initial state E to the final state X. If the final state X is in the plasticity region at the curve Y(p), then 
the RSW decays into an RSW, a constant-stress plateau, and a rarefaction wave. The RSW amplitude from 
point A will grow until the final state reaches point F'.  At point F '  the modulus of the tangent of the slope 
of the Rayleigh line (3/2)IAS1/Ap[ is greater than IOY/Opl , so the RSW velocity is greater than that of a 
plastic rarefaction wave %. As a result, the stress in the RSW decreases abruptly from point E to point F'.  
Behind this jump there is a constant-stress plateau, which is adjoined by the rarefaction wave propagating 
with the velocity 

dt v + a, ,  a, 1 + -~ f '  

The final state in the rarefaction wave corresponds to the point X. 
From a mathematical viewpoint the RSW is a first-order discontinuity, and the relation must be found 

at this discontinuity. For this purpose we rewrite Eq. (1) in a divergent form 

Op 0 0 0 
o-7 + ~ (;~) = o, N (;v) + ~ ( ; v -  - ~t) = o, 

0 (;(E + v2/2)) + ~ (;~(E + ,,2/2 - ~,~/;)) = o. 

Passing on to the RSW system, assuming stationary flow, we obtain after integration 

[pu] = 0, [pu  2 I O-1] = 0, [ H  "1- u 2 / 2 ]  = 0, g = ~ - O'llP, [qo] = ~ +  - ~ _ ,  g = g ( o ' l ,  S ) ,  

where H is enthalpy; u = v - D; D is RSW velocity; S is entropy. These equations coincide with the relations 
on a shock wave in gasdynamics, if one makes the substitution (rl --+ - p  in them. Therefore, to determine the 
entropy jump [S] in a weak RSW one can use the appropriate formula from gasdynamics [16]. After replacing p 
by cr we have 

1 o2v  
S + - S _ -  i2T_ \0~2/(~+ -a-)a (5) 

((/ = 1/p). The dependence cr = c~(V,S) is given in Fig. 7, whence it follows that the inverse function 
V = V(Cr, S) is two-valued. At fixed cr one value of V lies on the shock adiabat of loading and the other on 
the rarefaction adiabat. In the rarefaction wave all states lie at the rarefaction adiabat; therefore, selecting 
the latter, we find that  V = V(cr) is a single-valued function here. It is evident from Fig. 7 that at point A 
the function V = V(o') has a break. That is why to apply Eq. (5), one should first "disperse" cr = ~(V) in 
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the vicinity of point A. As a result we obtain 

OV 2 V+ - V _  

Hence it follows that at point A (0- = -pz )  the derivative 02V/00- 2 < 0, and at 0-+ < 0-_ the inequality 
S+ > S_ will hold, i.e., the entropy in the RSW increases. [The sign of the derivative 02V/00- 2 follows from 
the relation 021 ,700  -2 -~-- -(1/(Ocr/OV)3)(O2o'/OY 2) and the inequalities Oo'/OY < O, t020-/0V 2 < 0.] The 
RSW at phase transitions were predicted theoretically in [15] and found experimentally in metals [17] and 
gas-liquid media near the "liquid-vapor" critical point [18]. It should be noted that the RSW in iron [17] is 
connected with a polymorphic phase transition which takes place at a pressure of the order of 150 GPa which 
is greater than the maximum pressure considered in this work by more than a factor of 3. The generation of 
RSW in [17, 18] is concerned with the existence of points where 02V/Op 2 < 0, which in turn occur during 
phase transitions. In this case the appearance of a point with 02V/00- 2 < 0 is due to the strength properties 
of the porous body. 

Under the effect of pressure p the microstresses 0-}j with nonzero deviator S~j are concentrated in the 
vicinity of the pores. If the pressure is [Pl > IP01, then there appears a plastic zone which grows with the 
increase of pressure and when ]Pl > ]pz] occupies the whole volume. As a result, the yield strength Y and the 
mean stress deviator Sij become equal to zero. In this case the mechanical behavior of the porous material is 

similar to that of a liquid (o'ij = -p(~ij) and the speed of sound is a = ~ - p .  As the pressure decreases below 
Ipzl, elastic zones appear in the porous body so that the deviator of mean stresses Sij becomes nonzero and 

0-ij = --P~ij + Sij. As a result, the speed of sound increases abruptly to a = ~/(K + (4/3)#)/p and the RSW 
generates. 

The RSW generation in a porous body occurs only in the case of incomplete filling of the pores in a 
SW and is related to the dependence of the yield strength Y of a porous body on the pressure p. If the pores 
are completely filled in a SW (ml = 0), no RSW is generated since Y = Ys = const. The calculations carried 
out with vp = 0.642 mm/#sec  and m ~ = 10 .2 have shown that unloading occurs in this case in the same way 
as in a continuous elastoplastic material. 
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